Doublon dynamics and polar molecule production in an optical lattice.
نویسندگان
چکیده
Polar molecules in an optical lattice provide a versatile platform to study quantum many-body dynamics. Here we use such a system to prepare a density distribution where lattice sites are either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition, we observe clear effects on pairing that arise from inter-species interactions, a higher partial-wave Feshbach resonance and excited Bloch-band population. These observations facilitate a detailed understanding of molecule formation in the lattice. Moreover, the interplay of tunnelling and interaction of fermions and bosons provides a controllable platform to study Bose-Fermi Hubbard dynamics. Additionally, we can probe the distribution of the atomic gases in the lattice by measuring the inelastic loss of doublons. These techniques realize tools that are generically applicable to studying the complex dynamics of atomic mixtures in optical lattices.
منابع مشابه
Theoretical description of coherent doublon creation via lattice modulation spectroscopy
Using a recently developed strong-coupling method, we present a comprehensive theory for doublon production processes in modulation spectroscopy of a three-dimensional system of ultracold fermionic atoms in an optical lattice with a trap. The theoretical predictions compare well to the experimental time traces of doublon production. For experimentally feasible conditions, we provide a quantitat...
متن کاملThermalization of strongly interacting bosons after spontaneous emissions in optical lattices
We study the out-of-equilibrium dynamics of bosonic atoms in a 1D optical lattice, after the ground-state is excited by a single spontaneous emission event, i.e. after an absorption and re-emission of a lattice photon. This is an important fundamental source of decoherence for current experiments, and understanding the resulting dynamics and changes in the many-body state is important for contr...
متن کاملTransport of a Liquid Water-Methanol Mixture in a Single Wall Carbon Nanotube
In this work, a molecular dynamics simulation of the transport of water - methanol mixture through the single wall carbon nanotube (SWCNT) is reported. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is as an intermediate between polar and strongly polar molecules. Some physical properties of the methanol-water mixture such as r...
متن کاملAn ultracold gas of CsYb molecules in an optical lattice: A toolbox for quantum simulation
The goal of this project is to form a gas of ground-state polar molecules in an optical lattice, with each molecule interacting with its neighbours via controlled electric dipole and spin-spin interactions. This would constitute a rich and versatile system capable of simulating lattice-spin models that are ubiquitous in condensed matter physics [1]. The same system could also be used for proces...
متن کاملDoublon-Holon Binding Effects onMott Transitions in Two-Dimensional BoseHubbardModel
A mechanism of Mott transitions in a Bose Hubbard model on a square lattice is studied, using a variational Monte Carlo method. Besides an onsite correlation factor, we introduce a four-body doublon-holon factor into the trial state, which considerably improves the variational energy and can appropriately describe a superfluidinsulator transition. Its essense consists in binding (and unbinding)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 7 شماره
صفحات -
تاریخ انتشار 2016